Волоконно-оптические датчики используются в современных приложениях в области робототехники и автоматизации. Волоконно-оптическая технология оказывается несравненно лучше, чем обычные оптические решения. Это связано с нечувствительностью к электромагнитным помехам, минимальными потерями, а также возможностью использования широкой полосы модулированного светового пучка.

Что такое и как работает оптоволоконный датчик?

Динамичное развитие волоконно-оптических технологий и оптоэлектроники привело к тому, что волоконно-оптические и волоконно-оптические датчики все шире используются во многих секторах экономики и промышленности: от электротехники и телекоммуникаций, широко распространенной промышленности и робототехники до медицинской и пищевой промышленности. Решения в области волоконно-оптических технологий в основном используются в области измерительного и контрольного оборудования, а также в форме среды передачи.

Волоконно-оптический датчик — это не что иное, как преобразователь или набор преобразователей, размещенных в начале измерительного тракта. Эти преобразователи могут определять значение измеряемой величины и преобразовывать ее в изменения параметров выходного сигнала. При определении работы волоконно-оптического датчика должна быть определена операция внутренней и внешней модуляции.

Внутренняя модуляция световой волны, протекающей в оптическом волокне, происходит, когда внешний фактор взаимодействует непосредственно с оптическим волокном. Однако внешняя модуляция — это воздействие на световую волну, уже полученную из оптического волокна.

Оптоволоконный датчик с внутренней модуляцией работает таким образом, что ограниченный участок оптического волокна действует как сенсорная головка, в которой внешние факторы, действующие на оптическое волокно, изменяют параметры распространяющейся световой волны. Способ модуляции параметров световой волны зависит от типа оптического волокна, встроенного в оптоволоконный датчик .

Датчики в автоматике можно разделить на пассивные и активные устройства. Активный оптоволоконный датчик имеет структуру, которая содержит источник оптического сигнала, в то время как пассивный оптоволоконный датчик требует энергии для работы. Львиная доля волоконно-оптических приложений в автоматизации основана на пассивных датчиках, также называемых параметрическими датчиками.

Типы волоконно-оптических датчиков

Существует много критериев разделения оптоволоконных датчиков , и наиболее важными из них являются: место обработки сигнала оптоволоконным датчиком, метод получения информации об измеренной величине и форме выходного сигнала.

Деление обусловлено местом обработки сигналов. Согласно этому критерию, оптоволоконные датчики с внешней обработкой (гибридные) можно заменить, в которых сигнал подается и выводится из датчика с помощью оптоволоконных датчиков с внутренней обработкой (полностью оптическое волокно).

В этих датчиках оптическое волокно также функционирует как оптический преобразователь и волновод. Гибридные датчики включают, среди прочего: элементы с изменением передачи и отражательные или многомодовые поляриметрические датчики. Волоконно-оптические датчики — это, в частности, микротурбинные датчики, датчики с брэгговскими сетями и интерферометрические датчики.

Деление обусловлено способом получения информации об измеряемой величине. Этот критерий отличает: одноточечные оптоволоконные датчики, многоточечные датчики и непрерывный прием в космосе. В одноточечных датчиках используется потеря степени связи в оптоволоконных отношениях, например, в отражательных датчиках. Многоточечные датчики работают по принципу использования изменений потерь, поляризации интенсивности флуоресценции или интенсивности обратного рассеяния. Датчики изменения потерь включают Микрофузионные оптоволоконные датчики перемещения, силы и давления.

Датчики с непрерывным приемом в космосе представляют собой датчики, используемые в автоматике, в основном для измерения распределения температуры в резервуарах, устройствах и машинах.

Возможности волоконно-оптической технологии

Решения в области волоконно-оптических технологий, в частности волоконно-оптических датчиков, в настоящее время в основном используются в области измерительного оборудования. Минимальные потери по длине линии при передаче волоконно-оптических сигналов, полная невосприимчивость к электромагнитным помехам, а также скорость передачи информации делают возможности волоконно-оптических технологий более доступными, чем ряд традиционных оптических методов, используемых до сих пор. Основные преимущества волоконно-оптических датчиков и волоконно-оптических технологий включают в себя:

  • невосприимчивость к электромагнитным помехам,
  • значительная чувствительность обработки,
  • возможность связи с телекоммуникационными системами из-за того, что оптический сигнал является неэлектрическим выходным сигналом,
  • возможность работать в опасных и неблагоприятных средах (химически агрессивная среда, легковоспламеняющаяся среда или потенциально взрывоопасная среда),
  • компактные размеры,
  • высокая чувствительность, точность и надежность,
  • умение работать без прикосновения,
  • широкая полоса пропускания, обеспечивающая очень быструю передачу информации.

Следовательно, специфика оптических волокон и волоконно-оптических датчиков делает их применимыми в автоматизации, среди прочего в:

  1. интеллектуальные структуры, которые представляют собой датчики, встроенные непосредственно в композитные материалы и используемые для обнаружения: вибрации, температуры и напряжений,
  2. обнаружение аномалий электромагнитного поля в системах распределения электроэнергии,
  3. обнаружение утечки,
  4. мониторы температуры и напряжения,
  5. точные измерения акустической эмиссии,
  6. механизмы захвата и другие применения в промышленных манипуляторах и мобильных роботах,
  7. многоточечные измерительные системы одного размера и несколько измерительных систем в различных точках измерения.

Огромные возможности волоконно-оптических датчиков делают их успешно используемыми в: энергетике, промышленности, науке, медицине, оборонной промышленности и авиации, а также в пищевой промышленности и исследованиях в области пищевых продуктов.

Оставить комментарий